Social Icons

Showing posts with label Learning. Show all posts
Showing posts with label Learning. Show all posts

Wednesday, July 25, 2012

What is it? Science


Where is it? In the primary school, children are seeking simple answers to their questions, which usually begin with: ‘What is it?’ First of all, science is not a lot of things it was once thought to be; not a series of object lessons about a piece of granite, an old wasp’s nest, an acorn, or a tulip. It is not hit and miss like that, not learning the names of the parts of a grass- hopper or a flower; not learning to identify 20 trees, 20 insects, 20 flowers or 20 anything else.

What is science, then? It is a study of the problems that are found wherever children live. More formally stated, it is a study of the natural environment—not merely pieces of chemistry and physics and biology and astronomy and geology. Its content is connected with those subjects but it is a study of problems that pop into curious children’s minds as they live and grow from one day to the next, such as: What makes the wind blow? What’s in a cloud? What’s a stone made of? What does a bell do when it rings? How can a seed grow into a tree ? What makes a rainbow? Anyone who has ever worked with primary school girls and boys knows that most of them are full of questions like this and like to know the answers to them. Well, finding the answers to such questions— that is science.

And it need not be too technical. The full explanation is not what the l0-year-old needs. He could not understand that. It is a foundation in simple terms of the how, the when, the where, and the what of the things that happen around him every day. That is his science. He doesn't need the technical terms, the formulas and the detailed explanations. Those will come later, but when he is 10 he chiefly needs to get satisfaction out of his tendency to be curious. He needs to have his curiosity broadened, his interests nurtured and his enthusiasms encouraged. That is the kind of science which fits him and with which he is able to deal.

It is generally true that a well-informed person is an interesting one, and some information regarding the environment is one of the pieces of equipment that go to make up an informed individual. That does not mean that you expect to pump your pupils full of facts that they can merely use to fill up blank spaces in conversation. It means that you want to help them to come to learn generalizations or meanings which they can use in interpreting problems in their environment.

One aim in science, then, is to teach generalizations that can be used by pupils in interpreting the problems they come across in their daily living. The more nearly we can come to studying the problems that really make a difference in the lives of girls and boys the closer we are to having a science program.

You don’t want your girls and boys to grow up to be sloppy thinkers. The method by which science generalizations were originally discovered is the kind of thinking we hope they can be trained to achieve. We may call it a scientific way of getting the right answer. There is nothing brand-new about this idea. Probably you have been doing it for years in arithmetic and other subjects: defining the problem, suggesting several hypotheses, gathering evidence, drawing conclusions, checking conclusions. That does not mean that every time a problem comes up you get out these steps and make pupils climb them.

Popular Posts

Showing posts with label Learning. Show all posts
Showing posts with label Learning. Show all posts

What is it? Science

2:20:00 AM Reporter: Vishwajeet Singh 0 Responses

Where is it? In the primary school, children are seeking simple answers to their questions, which usually begin with: ‘What is it?’ First of all, science is not a lot of things it was once thought to be; not a series of object lessons about a piece of granite, an old wasp’s nest, an acorn, or a tulip. It is not hit and miss like that, not learning the names of the parts of a grass- hopper or a flower; not learning to identify 20 trees, 20 insects, 20 flowers or 20 anything else.

What is science, then? It is a study of the problems that are found wherever children live. More formally stated, it is a study of the natural environment—not merely pieces of chemistry and physics and biology and astronomy and geology. Its content is connected with those subjects but it is a study of problems that pop into curious children’s minds as they live and grow from one day to the next, such as: What makes the wind blow? What’s in a cloud? What’s a stone made of? What does a bell do when it rings? How can a seed grow into a tree ? What makes a rainbow? Anyone who has ever worked with primary school girls and boys knows that most of them are full of questions like this and like to know the answers to them. Well, finding the answers to such questions— that is science.

And it need not be too technical. The full explanation is not what the l0-year-old needs. He could not understand that. It is a foundation in simple terms of the how, the when, the where, and the what of the things that happen around him every day. That is his science. He doesn't need the technical terms, the formulas and the detailed explanations. Those will come later, but when he is 10 he chiefly needs to get satisfaction out of his tendency to be curious. He needs to have his curiosity broadened, his interests nurtured and his enthusiasms encouraged. That is the kind of science which fits him and with which he is able to deal.

It is generally true that a well-informed person is an interesting one, and some information regarding the environment is one of the pieces of equipment that go to make up an informed individual. That does not mean that you expect to pump your pupils full of facts that they can merely use to fill up blank spaces in conversation. It means that you want to help them to come to learn generalizations or meanings which they can use in interpreting problems in their environment.

One aim in science, then, is to teach generalizations that can be used by pupils in interpreting the problems they come across in their daily living. The more nearly we can come to studying the problems that really make a difference in the lives of girls and boys the closer we are to having a science program.

You don’t want your girls and boys to grow up to be sloppy thinkers. The method by which science generalizations were originally discovered is the kind of thinking we hope they can be trained to achieve. We may call it a scientific way of getting the right answer. There is nothing brand-new about this idea. Probably you have been doing it for years in arithmetic and other subjects: defining the problem, suggesting several hypotheses, gathering evidence, drawing conclusions, checking conclusions. That does not mean that every time a problem comes up you get out these steps and make pupils climb them.

Read more...